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1 Introduction

This note is about observer, mainly focused on the high-gian observer which is
suitable for most of the simple dynamic systems we met in the real world.

2 Triangular form

the general form can be written as:

ξ̇1 = ξ2 +Φ1(u, ξ1)
...

ξ̇i = ξi +Φi(u, ξ1, ξ2, ..., ξi)
...

ξ̇m = Φm(u, ξ)
y = ξ1

where for all 1,2,...m
ξi ∈ Rd

ξ = (ξ1, ξ2, .., ξm)

Also, the function Φi need to be Lipschitz, that is to say

|Φi(u, ξ1a, ξ2a, ..., ξia)− Φi(u, ξ1b, ξ2b, ..., ξib)| ≤ a

i∑
j=1

|ξja − ξjb|

once we get the general form, we can get the observer:

˙̂
ξ1 = ξ̂2 +Φ1(u, ξ̂1)− Lk1(ξ̂1 − y)

...
˙̂
ξi = ξ̂i +Φi(u, ξ̂1, ξ̂2, ..., ξ̂i)− Liki(ξ̂1 − y)

...
˙̂
ξm = Φm(u, ξ̂)− Lmkm(ξ̂1 − y)
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now let’s turn to the parameter: Φis defined as before, ξ̂ means the state in the
observer, that is , the ’ simulated ’ data.
L is the high-gain parameter, it measures the ’force’ of the boundary when ξ̂1
deviate from y. (same as K in linear form)
(k1, ...km) ∈ Rnsatisfied the roots of:

sm + kmsm−1 + ...+ k2s+ k1

has strictly negative real part.also we need Φ to be lipschitz.
then we can satisfied that it follows

|ξ̂(t)− ξ(t)| ≤ β|ξ̂(t0)− ξ(t0)|e
−(2λL−a

√
m

L2−1
L
√

α2
α1

)

actually, this boundary is not the best form. If we define ϵ as

ϵ = (ϵ1, ϵ2, ..., ϵm), ei = Li−1ϵi

then it can be write in this form:

|ϵ̂(t)− ϵ(t)| ≤
√

α2

α1
|ϵ̂(t0)− ϵ(t0)|e

−(2λL−a
√

m
L2−1

L
√

α2
α1

)

where a is the lipschitz constant,λ, α1, α2can be found in the proof.
proof
We consider a more general form:

˙̂
ξ1 = ξ̂2 + Φ̃1(u, ξ̂1)− Lk1(ξ̂1 − y)

...
˙̂
ξi = ξ̂i + Φ̃i(u, ξ̂1, ξ̂2, ..., ξ̂i)− Liki(ξ̂1 − y)

...
˙̂
ξm = Φ̃m(u, ξ̂)− Lmkm(ξ̂1 − y)

while Φ indicate the real dynamics and Φ̃ indicate the approximation dynamics.
They satisfied

|Φ(x)− Φ̃(x)| < M

We define matrix A as 
0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

0 0 0 0 1
0 0 0 0 0


and also the matrix L: 

I 0 0 0 0
0 L 0 0 0
0 0 L2 0 0

0 0 0
. . . 1

0 0 0 0 Lm−1
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C =
[
Idy

0 · · · 0
]

K =


k1I
k2I
· · ·
kmI


Then we can rewrite the dynamics into

˙̂
ξ = Aξ̂ + Φ̃(ξ̂)− LLKCe

e = ξ̂ − ξ

And the original dynamics is

ξ̇ = Aξ +Φ(ξ)

So make the difference we have:

ė = Ae+ Φ̃(ξ̂)− Φ(ξ)− LLKCe = Ae+∆Φ− LLKCe

L−1ė = L−1AL(L−1e) + L−1∆Φ− LKCL(L−1e)

= LL−1LA(L−1e) + L−1∆Φ− LKC(L−1e)

define ϵ as L−1e
1

L
ϵ = (A−KC)ϵ+

1

L
L−1∆Φ

We can choose K so that A-KC is Hurwitz, so

∃P, (A−KC)TP + P (A−KC) ≤ −4λP

define V = ϵTPϵ Then

1

L
V̇ (ϵ) = 2ϵTP ((A−KC)ϵ+

1

L
L−1∆Φ)

≤ −4λV (ϵ) + 2ϵTP
1

L
L−1∆Φ

= −4λV (ϵ) + 2ϵTP
1

L
L−1(Φ̃(ξ̂)− Φ(ξ̂) + Φ(ξ̂)− Φ(ξ))

≤ −4λV (ϵ) + 2||ϵTP || 1
L
L−1M + 2ϵTP

1

L
L−1(Φ(ξ̂)− Φ(ξ))

|Φi(ξ̂)− Φi(ξ)| ≤ a

i∑
j=1

||ξ̂j − ξj ||

here we use the sum of L2 norm because for linear system the sum of L2 norm
is tight for lipschitz condition.
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Then

||L−1(Φ(ξ̂)− Φ(ξ))||2 =

m∑
i=1

(

i∑
j=1

a

Li−1
||ξ̂j − ξj ||)2

≤
m∑
i=1

a2

L2i−2
m(

i∑
j=1

||ξ̂j − ξj ||2)

= a2m

m∑
i=1

(

i∑
j=1

1

L2i−2
||ξ̂j − ξj ||2)

= a2m

m∑
j=1

(

m∑
i=j

1

L2i−2
)||ξ̂j − ξj ||2

≤ a2m

m∑
j=1

L2

L2 − 1

1

L2j−2
||ξ̂j − ξj ||2

= a2m

m∑
j=1

L2

L2 − 1
||ϵi||2

= a2m
L2

L2 − 1
||ϵ||2

So finally we have

V̇ (ϵ) ≤ −4λLV (ϵ) + 2||ϵTP ||M + 2a

√
m

L2

L2 − 1
||ϵTP ||||ϵ||

And we have

||ϵTP || ≤
√
ϵTPϵ

√
α2

||ϵ|| ≤ 1
√
α1

√
ϵTPϵ

α1,α2 is the min and max eigen value of P.
So we plug in,

V̇ (ϵ) ≤ −(4λL− 2a

√
m

L2

L2 − 1

√
α2

α1
)V (ϵ) + 2

√
α2

α1

V (ϵ)M

||ϵ||

= −2rV (ϵ) + 2

√
α2

α1

M

||ϵ||
V (ϵ)

if 2
√

α2

α1

M
||ϵ|| < r

V̇ (ϵ) ≤ −rV (ϵ)
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it is easy to show error decrease expenentially. otherwise if 2
√

α2

α1

M
||ϵ|| ≥ r,we

have ||ϵ|| ≤ 2
√

α2

α1

M
r Finally it leads to:

|ϵ(t)| ≤ max{
√

α2

α1
|ϵ(t0)|e

−(λL− aL
2

√
m

L2−1

√
α2
α1

)
, 2

√
α2

α1

M

−(2λL− a
√

m
L2−1L

√
α2

α1
)
}

As for the result we get:

Figure 1: error bound

2.1 cart-pole

first let us look at the dynamic of cart-pole system:

ẍ =
1

mc +mpsin2θ
(u+mpsinθ(lθ̇

2 + gcosθ))

θ̈ =
1

l(mc +mpsin2θ)
[−ucosθ −mplθ̇

2cosθsinθ − (mc +mp)gsinθ]

we can rewrite the dynamics into triangular form:
ξ̇1 = ξ2

ξ̇2 =

[
u+mpsinθgcosθ
mc+mpsin2θ

−ucosθ−(mc+mp)gsinθ
l(mc+mpsin2θ)

]
+

 mpsinθlθ̇
2

mc+mpsin2θ
−mplθ̇

2sinθcosθ
l(mc+mpsin2θ)

 = Φ(u, ξ1, ξ2)
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where

ξ1 =

[
x
θ

]
, ξ2 =

[
ẋ

θ̇

]
so we get the observer as:{

˙̂
ξ1 = ξ̂2 − Lk1(ξ̂1 − y)

˙̂
ξ2 = Φ(u, ξ̂1, ξ̂2)− L2k2(ξ̂1 − y)

as we discussed above, k1, k2need to satisfy some rules. in this problem they
only need to be positive.
unfortunately, this function is not global lipschitz, unless we can bounded the
θ̇
proof
we can define

Φ1 =

[
u+mpsinθgcosθ
mc+mpsin2θ

−ucosθ−(mc+mp)gsinθ
l(mc+mpsin2θ)

]
,Φ2 =

 mpsinθlθ̇
2

mc+mpsin2θ
−mpθ̇

2sinθcosθ
mc+mpsin2θ


then there must be

Φ1 +Φ2 = Φ

note that when we calculate |ξ̂− ξ|when we proof the convegence of the system,
Φ1 is only the function of θ, so it can disappear when we calculate the difference.
So the only task we need to du is to proof Φ2 is lipschitz.

|Φ2(u, ξa)− Φ2(u, ξb)| =
mp

mc +mpsin2θ

√
l2(sinθaθ̇2a − sinθbθ̇2b )

2 + (cosθasinθaθ̇2a − cosθbsinθbθ̇2b )
2

≤ mpmax(l, 1)

mc +mp

√
(sinθaθ̇2a − sinθbθ̇2b )

2 + (cosθasinθaθ̇2a − cosθbsinθbθ̇2b )
2

if we have |θ̇| < K

(sinθaθ̇
2
a − sinθbθ̇

2
b )

2

=((sinθb + (sinθa − sinθb))(θ̇
2
b + (θ̇2a − θ̇2b ))− sinθbθ̇

2
b )

2

=((sinθa − sinθb)(θ̇
2
a − θ̇2b ) + sinθb(θ̇

2
a − θ̇2b ) + θ̇2b (sinθa − sinθb))

2

≤(3(θ̇2a − θ̇2b ) + θ̇2b (sinθa − sinθb))
2

≤(6K|θ̇a − θ̇b|+K2|θa − θb|)2

≤max(6K,K2)2(|θ̇a − θ̇b|+ |θa − θb|)2

6



also as the same, cosθbsinθbθ̇
2
b = 1

2sin(2θ)θ̇
2
b

(cosθasinθaθ̇
2
a − cosθbsinθbθ̇

2
b )

2

=
1

4
((sin2θb + (sin2θa − sin2θb))(θ̇

2
b + (θ̇2a − θ̇2b ))− sin2θbθ̇

2
b )

2

=((sin2θa − sin2θb)(θ̇
2
a − θ̇2b ) + sin2θb(θ̇

2
a − θ̇2b ) + θ̇2b (sin2θa − sin2θb))

2

≤(3(θ̇2a − θ̇2b ) + θ̇2b (sin2θa − sin2θb))
2

≤(6K|θ̇a − θ̇b|+ 2K2|θa − θb|)2

≤max(6K, 2K2)2(|θ̇a − θ̇b|+ |θa − θb|)2

let r2 = max(max(6K,K2)2,max(6K, 2K2)2),then

|Φ2(u, ξa)− Φ2(u, ξb)| =
mp

mc +mpsin2θ

√
l2(sinθaθ̇2a − sinθbθ̇2b )

2 + (cosθasinθaθ̇2a − cosθbsinθbθ̇2b )
2

≤ mpmax(l, 1)r

mc +mp
(|θ̇a − θ̇b|+ |θa − θb|)

≤ mpmax(l, 1)r

mc +mp
(|ξ1a − ξ1b|+ |ξ2a − ξ2b|)

so that is to say it is lipschitz.

actually,thinks of|θ̂a
2
− θ̂b

2
|. If we fixed |θa − θb|,then if we push θa −→ ∞,then

|θ̂a
2
− θ̂b

2
| will be ∞.

here are some result:

Figure 2: cart-pole
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2.2 quadrotor

Original dynamics: Assume there are body frame with the quadrotor and the
world frame not change. The rotation matrix from world frame to body frame
is R. Then dynamics should be:

ẋc = vc
v̇c = M−1(Mg +Rfb)

q̇ = q ⊙ w̃
ω̇ = J−1(τ − ω × Jω)

but it dont satisfied high-gain form, we must turn it to another form
ẋc = vc

v̇c = M−1(Mg +Rfb)
q̇ = vq

v̇q = q ⊙
[

qT q
1
2 q̇

]
and the result:

Figure 3: quadrator

2.3 noise estimation

If there is some noise for estimation, that is

y = ξ1 + w, ||w|| < ϵe

then the convegence of high-gain changed: if we define

r = 2λL− a

√
m

L2 − 1
L

√
α2

α1

8



then

|ϵ̂(t)− ϵ(t)| ≤ max{
√

α2

α1
|ϵ̂(t0)− ϵ(t0)|e−

1
2 (t−t0),

2||PK||ϵeL
α1r

}

3 region of attraction(ROA)

from the paper, theory 4.4 guarantee that if we have the dynamics and the
auxiliary function satisfied some assumption( from H0 to H6), then we can
solve the lypunov function from a PDE and determined the region of attraction
by define

Ω = {x|V (x) < +∞}

so the first step is to find an auxiliary function for the dynamics.

3.1 some conditions in the theory

we go to the H0-H2, which is some properties for the dynamics it self.
assump the dynamics is of this form:{

ξ̇1 = ξ2
ξ̇2 = Φ1(ξ1, ξ2) + Φ2(ξ1, ξ2)u

assume Φ1,Φ2 to be local lipschitz, Φ2 is bounded and not to be 0 at (0,0), and
for every R ,Φ1(ξ1, ξ2) ≤ Cd||ξ||2p, p ∈ Z for||ξ|| ≥ d
the form can be written as

ẋ = f(x, u)

(all of the four example satisfied this form)
assume

u ∈ U = {u|||u|| < 1}

(H0)
||f(x, u)− f(y, u)|| ≤ CR(1 + ||u||)||x− y||

R = max{||x||, ||y||}

(just as what we get from the high-gain form, only need Φ1 and Φ2 to be
lipschitz, actually, because the C is depend on R, the local lipschitz is ok)
(H1)

f(0, 0) = 0

need some transform to make (0,0), the origin, to be a equilibrium point.
(H2’)
there exist a open ball B(0,r) and c, σ, s.t. for every x ∈ B(0, r) there exist
bounded u(that is to say, u ∈ L∞([0,+∞], U) and

||ϕ(t, x, u)||+ ||u(t)|| ≤ ceσt||x||
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*Note:
ϕ is the solution of initial state x and control input u(t),so the equation is to
say , we ”can” get a u that make the system exponential decrease.

proof: only a high-level idea, note that

f(0, 0) = 0

so around the equilibrium point, Φ1 can be small, thus we can choose a sufficient
small u that make the system like

ẋ = Ax

and A is hurwitz. this need Φ2 not to be 0 around the origin, what is satisfied
for pendulum,cartpole and arcbots
now we get the ϕ is expenential decreasing, but what about u? actually when
we made a taylor expansion of Φ1, so if the Φ1 is continous differentiable, then
we can get

||Φ1|| ≤ C||x||

near the neigor of origin, then somehow(with some scaling) we can get

||u|| ≤ D||x||

then the (H2’) satisfied.
after that we go to the property H3-H6, which is related to the auxiliary func-
tion g.
(H3)
first, g has to satisfied (H0), but this is easy, g to be local lipschitz is ok.
second, g will not go to ∞ in a sphere and always positive
these condition are not difficult to satisfy.
*Note
actually the auxiliary function g is −V̇ , which V is the control lypunov function.
so positive is essential. more details will show later.
(H4’)

g(x, u) ≤ C(||x||+ ||u||)µ

if g is a polymial, this is also easy to satisfied.
(H6)

ĝ =
g(x, u)

1 + ||f(x, u)||
ĝ −→ +∞ as ||u|| −→ +∞ for every x
because we assume f is a linear function of u, so we add a quadratical term of
u on g is ok.
finally it comes (H5)
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(H5)
∃ C, s.t.

g(x, u) ≥ ||Φ1(ξ1, ξ2)||+ C||u||

when ||x|| ≥ 2r, ||u|| ≥ 2cr, c, r is the parameter in H2’
since we add a quadratical term of u on g in H5,the part of C||u|| is easy to
satisfied, and with the condition

||Φ1(ξ1, ξ2)|| ≤ Cd||ξ||2p, p ∈ Z for||ξ|| ≥ d

we can choose g(x, u) = (cd + 1)||x||2p + b||u||2

3.2 how to solve the equation

according to the theory 4.4, we can get:
we can solve equation

sup
u∈U

{−DV (x)f(x, u)− g(x, u)} = 0

to get the unique viscosity solution V(x) as a lyapunov function
*Note
the equation inside is

−V̇ (x)− g(x, u)

, so this equation is to say we can find a control input u that make

V̇ (x) = −g(x, u)

, so that we can get V is indeed a lyapunov function from g’s properties.
if we do not need to know how to solve the exactly form of V, then the region
of attraction under control input is defined by

Ω = {x|V (x) < +∞}

so
Ω = {x|V̇ (x) < +∞}

(this is a relaxation)
when will V̇ go to ∞? that is, when f(x,u) = 0 and g(x,u)̸=0, when we plug in
g(x, u) = (cd + 1)||x||2p + b||u||2 and apply in the pendulum, the solution will
be two points: you stretch the pendulum, i.e. the control input is 1 or -1 and
the system is equilibrium.but this is not in Ω
*Note
i think the reason why we solve some other points is, the solution is a viscosity
one, so sometime it do not have a gradient, and that is the two situation above.
without these two there is no points that V̇ go to ∞. it makes sense that

everywhere we can apply a u = - θ̇
||θ̇|| that make the system finally converge.
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